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Abstract

We explore a competitive financial market with non-price networks and costly information in

which investors can learn from both market prices and each other. Learning from others involves

direct observation of a source network and a spatial component that allows an investor to ‘build’

on the work of others. Price informativeness and return volatility depend on a new object we

term the ‘information mesh,’ which incorporates total information and network interconnected-

ness. The magnitude of the spatial component can significantly influence the information mesh.

Welfare analysis reveals significant inefficiencies whose direction depends on the initial quantity

of private information.
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1 Introduction

Over the past couple of decades, widespread use of the internet has significantly altered learning dynamics

and the transmission of knowledge. In the case of the financial industry, this has led to a relative surge of

non-price mechanisms of information transmission as simple and efficient alternative channels for learning.

Non-price mechanisms of information transmission include financial media services such as Bloomberg

or Reuters and external consulting services such as Deloitte or McKinsey & Company, which offer rich

databases used in forecasting returns. Perhaps most relevant, though, are both direct or indirect communi-

cations among investors themselves via e-mail, social networks, or slack channels. Indeed, the importance

of direct communication of this sort in its more primordial forms is undoubtedly among the reasons why

financial institutions have historically tended to agglomerate in particular metropolitan areas, such as New

York City or London.

In this paper, we explore the consequences of exogenous non-price investor networks for market efficiency

and welfare in a financial environment in the tradition of Verrecchia (1982). We consider a model of a

financial market with costly information acquisition in which investors can learn about the payoff of a risky

asset from prices, their own idiosyncratic signals, and the signals of others in their respective networks of

sources. Learning from others affects information acquisition in two ways. First, an investor can directly

learn by freely observing signals produced by others in his source network. Second, an investor can ‘build’

on the work of other investors by using it in the construction of his own signal.

This latter effect gets at the idea that an investor learns more than just the realization of others’

signals. He also learns ‘where’ they have searched and thus use his energy to ‘search elsewhere.’ Consider,

for instance, a potential investment in a Venezuelan bond. One investor in this market (A) may work to

produce an accurate forecast of oil prices, which will significantly impact default risk for this particular

economy. Another investor (B) who gets to freely observe the fruits of A’s labor is not likely to replicate

A’s work by producing another set of oil price forecasts. Since he is already privy to some information in

that vein, he may focus his energy instead on better understanding the political situation in the country

and what it may mean for potential repayment. A third investor (C) observing either or both, may choose

instead to learn more about the potential for interest rate increases in the developed world. And so on.

We model this phenomenon, which we identify as a spatial component to the information and payoff
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structure, tractably by assuming that an investor can1 pay for a signal whose noise is negatively correlated

with that of a source in his network. Intuitively, this implies that an investor can construct a signal that

will tend to reveal information not contained in his source network. The strength of this spatial component

can be intuitively expressed in terms the correlation of the noise shocks across the signals, ι ≤ 0. When

ι = 0 this effect is entirely absent, i.e., investors can still observe the signals of others in their network, but

their learning efforts are independent.

The model provides several interesting insights. First, we find that the equilibrium is unique, despite

the presence of significant network externalities and non-convexities in the underlying decision problems.

Thus, the model offers unique predictions for the relevant comparative statics, such as how market efficiency

responds to an increase in network connectedness.

Second, the model introduces a distinction between total information and a new metric we call the

‘information mesh.’ The former aggregates the information collection efforts undertaken by investors. The

latter adjusts this figure to account for the interconnectedness of the investment network, which includes

the spatial component, and is fundamentally derived from a typical investor’s posterior beliefs. Two

markets can coincide in total information but differ in their information meshes. The information mesh

will be thicker, i.e., have a higher value, in an economy in which the (same set of) idiosyncratic signals are

more widely distributed throughout the investor network.

The distinction, not present in a standard Verrecchia (1982) model without networks, is highly relevant.

The information mesh is the more meaningful metric of the two, as it governs price informativeness (or

market efficiency, as it is sometimes called, e.g., Han and Yang [2013]). Moreover, it is often the case that

total information and the information mesh move in opposite directions in response to key fundamentals.

For instance, an expansion of an investors’ circle of sources can often reduce total information (as a result

of free-riding) but nevertheless thicken the information mesh. Thus, market prices can become more

informative even as total information decreases.

Third, we find that the information mesh lowers return volatility. This is because a thicker information

mesh means greater market efficiency, which implies that prices more closely track payoffs, which reduces

dispersion in returns. It is also the case that the information mesh thickens the portfolio correlation across

1Importantly, investors are also given the choice not to exploit this spatial component. It is a result, however, that they always will.
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investors. This is a natural result of their information sets more closely resembling one another.

Fourth, we find that an increase in the network interconnectedness will increase market efficiency as

long as information costs are high enough. This finding contrasts with that of Han and Yang (2013),

who find in a related model in the vein of Grossman and Stiglitz (1980) that network growth generates

enough free-riding to always reduce market efficiency. We also find free-riding to be a strong force; indeed,

free-riding can often reduce total information in the economy. However, the information mesh will grow

despite this as the network expands because the free-riding will not be large enough to offset the increased

dispersion of information more widely throughout the economy’s networks.

Fifth, the model reveals that the spatial component of information acquisition is tantamount to a

reduction in the total and marginal cost of information acquisition. This implies that, ceteris paribus,

greater spatial dynamics in the underlying information structure will imply larger responses of equilibrium

precision to changes in fundamentals.

For instance, the magnitude of free-riding behavior is influenced substantially by the size of the spatial

component of information acquisition. The bigger is the spatial component, the stronger is the effect of

free-riding. The intuition is straightforward: A reduction in information acquisition efforts by investor i

that results from free-riding behavior also raises marginal costs for other investors who may be building

on the work done by i, which works to further reduce information acquisition efforts across the investor

network.

Finally, in a welfare exercise we find that the equilibrium typically ‘over-reacts’ relative to the efficient

allocation of information acquisition. By this we mean the following: The economy begins with some

amount of private information for which investors need not exert any effort. Investors can choose to

pay for additional costly signals that are then subject to the network dynamics described before. In our

model, over reaction implies that when there is little initial information in the economy, the competitive

equilibrium results in inefficiently low information acquisition. When there is a larger amount of initial

information, though, the competitive equilibrium results in inefficiently high information acquisition.

The fundamental reason for both is that investors do not internalize the impact that their information

acquisition efforts will have on market prices. In the low-information case, investors are exposed to a

significant degree of consumption volatility at the end of the game and they do not want to increase it
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by introducing more noisy signals. The planner, though, realizes that additional information acquisition

efforts will reduce return volatility, which ultimately benefits the investors.

In the high-information case, investors are exposed to very little consumption volatility at the end of

the game and thus feel comfortable adding noisy signals into the mix. What the planner realizes, though,

is that too much information acquisition will lower the average return, which is a first-order effect harmful

to all investors but internalized by none of them. This effect is made especially harmful by the presence

of the spatial component, which kicks inefficient over-acquisition into overdrive.

1.1 Related Literature and Contribution

This paper contributes to the literature on informational efficiency in financial markets spawned by Gross-

man (1976) and Grossman and Stiglitz (1980), who posit an environment in which investors can learn

from prices but not from each other and who assume that some unlearnable uncertainty exists to preclude

prices being fully revealing. Just a few examples in this literature include Verrecchia (1982), Admati

(1985), Peress (2004), Dow and Gorton (2006), Van Nieuwerburgh and Veldkamp (2009, 2010), Mackowiak

and Wiederholt (2009), Banerjee (2011), Valchev (2017), and Pavan et al. (2022). Colla and Mele (2010)

and Ozsoylev and Walden (2011) explore similar models with information networks that are taken as ex-

ogenous. Our study extends this literature by incorporating networks into a model of endogenous and

costly information production and by generating new predictions linking social communication to market

efficiency and volatility.

The most related papers to ours are Halim et al. (2019) and Han and Yang (2013), who also explore

financial markets with costly information and social networks. The former is an empirical study using

laboratory experimental data, and the latter is the only other theoretical paper to our knowledge to study

the effect of social communication on financial market outcomes when information is endogenously acquired

at a cost.

There are two key differences between our work and Han and Yang (2013). The first is how information

acquisition is treated. Han and Yang (2013) follow the framework of Grossman and Stiglitz (1980), in

which becoming informed is a binary decision and an indifference condition between being informed and

uninformed closes the model by allowing for the fraction of informed investors to adjust to clear markets.
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In this framework, they show that free-riding must be a powerful force in equilibrium. This is because the

expected information received from others will always be increasing as the network expands, which implies

that the information received from the price, i.e., market efficiency, must be decreasing in order for this

key indifference condition to hold.

We instead build on the framework of Verrecchia (1982), in which all investors are equally informed in

equilibrium and information acquisition instead happens on the intensive margin. As such, the indiffer-

ence condition that demands a powerful free-riding effect is not present. Free-riding continues to play a

prominent role, but it need not be, and indeed is not, so over-powering as to overturn the market efficiency

benefits of information sharing among the investors.

The second major difference is the presence of the spatial component, which is present in our model

but is absent in Han and Yang (2013). The spatial component significantly influences learning incentives,

market dynamics, and welfare.

Our results can shed partial light on some empirical experimental results by Halim et al. (2019) that

seem to contrast with Han and Yang (2013). For instance, Halim et al. (2019) find that market liquidity2

tends to rise with network interconnectedness, which accords with the prediction of our model, but not

that of Han and Yang (2013).

Given that a core driver of our results is related to investors’ ability to observe and mimic other investors

in a social network, our paper is also related to a literature on investor herding and mimicking behavior,

e.g., Hong and Stein (1999), Chari and Kehoe (2003, 2004), Veldkamp (2006a), and Gu (2011) among

others.

The spatial component in our model generates a complementarity in information-acquisition activity.

Many other works have argued that such information complementarities emerge in alternative settings.

Garćıa and Strobl (2010) show that the marginal value of information can increase in the number of

agents who acquire it, depending on how an investor’s marginal utility of consumption is related to other

investors’ consumption. Other sources of the complementarity include short-term trades (Froot et al.

[1992]; Chamley [2007]), fixed costs in information production (Veldkamp [2006b]), correlation of noise in

2‘Market liquidity’ here is interpreted as the magnitude of the pricing coefficient on the noise term. See Han and Yang (2013) for further

discussion as to why.
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supply and fundamentals (Barlevy and Veronesi [2007]), the presence of an additional dimension of supply

information (Ganguli and Yang [2009]), feedbacks between financial markets and the value of traded

securities (Goldstein et al. [2013]), or investors being ambiguity averse (Mele and Sangiorgi [2015]).

The rest of the paper is organized as follows. Section 2 describes the main features of the model and

defines the equilibrium notion. Section 3 explores the key properties of the investment stage of the game.

Section 4 explores the key properties of the information acquisition stage of the game. Section 5 concludes.

2 Model Description

2.1 Market Structure

We consider a financial market in the tradition of Verrecchia (1982) in which investors attempt to infer

an asset’s payoff by direct means, i.e., information acquisition, as well as market prices. Some aggregate

unobservable noise, in this case a supply shock, obscures perfect revelation by prices. We add into this

structure a social network amongst investors that allows for the transmission of some of their information

via non-price mechanisms.

There are two assets traded in the market. One is a risky asset that pays a stochastic dividend,

θ ∼ N
(
θ̄, 1

κ

)
and the other yields a gross, risk-free return R > 0. The risk-free asset price is normalized

to unity. The risky asset supply is random and distributed, a ∼ N
(
ā, 1

β

)
.

On the other side of the market there is a unit continuum of investors, each denoted by i ∈ [0, 1]. These

investors are rational and update their beliefs according to Bayes’ rule. Following Grossman and Stiglitz

(1980), they receive private signals about the underlying fundamental, θ, but can infer nothing about the

risky asset supply a except through the price. They make bids contingent on both realized prices and their

private information to maximize their utility post-private-signal realization. Each has an initial stock of

risk-free assets, w0.

The price of the risky asset adjusts to clear markets and can depend only on these aggregate funda-

mentals. It is given by a function q(a, θ). Following Grossman and Stiglitz (1980), investors observe the

price and can use it to infer information, but they directly observe neither θ nor a.
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2.2 Information Structure

Investors observe a countable number of private signals of the dividend, θ. Each investor, i, receives one

‘non-mimickable’ private signal, ξi, given

ξi = θ + νi

where νi ∼ N
(

0, 1
χ

)
, i.e., χ is the precision of the non-mimickable private signal, which is taken to be

exogenous. These signals follow the tradition of Verrecchia (1982) insofar as no other agent j 6= i is privy

to the realization of ξi and thus cannot condition bids on it.3

In addition to a non-mimickable private signal, each investor can construct a mimickable private signal,

zi = θ + εi

where εi ∼ N
(

0, 1
ηi

)
and ηi ≥ 0 is the precision of the signal. Importantly, the precision of this signal is

chosen by the investor in a way we’ll describe shortly.

The mimickability of zi enters in two ways. First, investor i gets to observe the realizations (and

precisions) of the mimickable signals, zj, of M − 1 ≥ 1 other investors for some integer M . We assume

that investor i can observe (and condition bids on) his own signal plus those of investors in his network

which we will refer to as his sources and index by si(2), si(3), . . . , si(M). All of his sources will also be

indexed in [0, 1] as follows. We define a constant scaling factor ζ > 1 to be such that ζ ∈ R/Q, i.e., ζ is an

irrational number. We then define si(k) = i/(ζk) when k > 1. Because each investor constructs his own

signal as well and is thus among his sources, we set si(1) = i.

This particular network structure is designed to eliminate strategic incentives. The subset of i’s mim-

ickers will always be countable and so investor i could never hope to influence market prices by swaying

the mimicry of others. Further, while every investor j ≤ 1/ζ will be a member of some other investor’s

source network, due to the irrationality of ζ, no two source networks will be overlapping.4

The second way mimickability plays a role is through a spatial component in the information structure

3χ controls the amount of initial information in the economy before agents contemplate adding more to it endogenously. It turns out to be a

critical parameter for welfare analysis.
4Further, when j is a member of i’s network, j’s source network will never intersect with the rest of i’s network. This also follows from the

irrationality of ζ.
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itself. We model this as follows: An investor i may select at most one signal, j, from his source network

to ‘build on.’ We will call this source sb,i. He does so via a technology that sets the innovation in his

mimickable signal (εi) to be correlated with the innovation in j’s mimickable signal, (εj). Thus, the two

innovations taken individually are marginally as described above but, taken together, are jointly normal

with a correlation coefficient given by a fixed parameter ι ∈ (ι, 0].

We will show this formally in the analysis, but intuitively the negativity of ι captures the idea that,

after observing the realization of j’s signal, i can choose to search ‘in a different direction,’ and learn

information that j’s signal does not tend to reveal.5 The strength of this effect is given by the distance of ι

from zero. When ι = 0, this effect is absent and all information-gathering is orthogonal to what is collected

from the source network. As ι falls away from zero, the investor will be able to save on information costs

by building on prior knowledge from the source network in this way.

The construction of mimickable signals is subject to a convex information cost, C(ηi) that satisfies (1)

C(0) = 0, (2) C ′(η) ≥ 0, (3) C ′′(η) ≥ 0, and (4) C ′(0) = 0. There is also a constant per-unit disutility of

the information cost given by λ > 0.

In addition to these mimickable (semi-private) signals, investors can also infer information from the

price itself, which in equilibrium will serve as a noisy aggregate signal of the dividend as well.

It is most convenient to express the investors’ problem working backward in time. We follow Grossman

and Stiglitz (1980) and many others in their tradition and assume constant absolute risk aversion in the

utility function with absolute risk-aversion given by α > 0. This implies that the investment problem for

investor i, conditional on a given information set, is given by

Ui
(
ξi, {zsi(k)}Mk=1, q, {ηsi(k)}Mk=1

)
= max

bi
αE
[
− exp (−αc̃i) |ξi, {zsi(k), ηsi(k)}Mk=1, q

]
(1)

ci = [w0 − qbi]R + biθ

The objects of the expectation are random variables denoted with a tilde and are taken with respect to

the investor’s information set at the time. There are no financial frictions here and investors are allowed

to short the risky asset.

5The irrationality of ζ also ensures that an investor can never build on a signal that is already built on another signal in his source network, as

it ensures that the source networks are non-overlapping.
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Moving backward from the investment decision, the ex-ante utility in the information design problem

is given by the payoff of a Nash game in information acquisition, wherein each investor takes the signal

precisions of the other investors as given.

Ui
(
{ηsi(k)}Mk=2

)
= max

0≤ηi≤η̄,sb,i∈{{si(k)}Mk=2,φ}
E
[
Ui

(
ξ̃i, {z̃si(k)}Mk=1, q̃, {ηsi(k)}Mk=1

)]
− λC (ηi) (2)

where sb,i is the choice of which investor in the source network to build on, the procedure for doing which

is described above. Notice that the investor may also choose to not build on any source in his network, as

denoted by the presence of the empty set among the choices for sb,i. Setting sb,i = φ would imply a choice

to set the noise of his signal to be independent of all others in his network.

Notice that the information cost applies only to mimickable information production as the non-mimickable

private information is exogenous. Also, while investors can make bids contingent on price realizations,

they cannot make information acquisition decisions based on it. This is consistent with the idea of price-

contingent bids as being limit orders that must be placed ahead of time.6

The solution to this problem is a best-response function. For analytic tractability, we will assume that

investors in the first (information-gathering) stage are optimizing a second-order approximation of the

objective function in Problem 2 and define the best-response function from this solution to be

η∗i = GI

(
{ηsi(k)}Mk=2

)
(3)

2.3 Market Clearing

The price, q(a, θ), must adjust to clear markets in all possible aggregate states, i.e.,

a =

∫ 1

0

∫ ∫
· · ·
∫
b∗i
(
ξi, {z∗si(k)}Mk=1, q(a, θ)|{η∗si(k)}Mk=1,

)
f(zsi(1)|θ)dzsi(1) . . . f(zsi(M)|θ)dzsi(M)f(ξi|θ)dξidi

(4)

where b∗i is the solution to the investment problem, i.e., Equation 1 and η∗i is the solution to the information

game, i.e., the fixed point of the best-response function implied by Equation 2.

6The cap on information acquisition is merely a technical condition. In practice we will set η̄ high enough that it never binds in equilibrium.
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2.4 Equilibrium Definition

A Competitive Equilibrium will be a price function, q(a, θ), investment policy functions, b∗i , and infor-

mation acquisition level, η∗, such that

1. b∗i maximizes investor utility in Equation (1).

2. η∗ = GI

(
{η∗}Mk=2

)
, i.e., the information acquisition satisfies Equation (3) and agents are homogenous

at the information-gathering stage.

3. Markets clear, i.e., Equation (4) holds.

4. The pricing function is linear in its inputs.

3 Analysis: Investment and Pricing

In this section, we formalize a collection of useful and interesting results regarding the model’s behavior

in equilibrium. Proofs of all propositions can be found in Appendix A.

3.1 Uniqueness and Efficiency

We begin with a uniqueness result.

Proposition 1. A unique competitive equilibrium exists.

Existence is not terribly surprising, but uniqueness is. The network dynamics and spatial component

generate strong strategic complementaries in information acquisition stage. Further, the investor’s equi-

librium information acquisition problem is actually not convex.7 Despite these hurdles, though, a unique

equilibrium emerges in which the allocation of investment resources and information is typically governed

by marginal trade-offs.

To help build intuition, we write out the equilibrium price following Admati (1985) as follows

Rq(a, θ) = A+B × (a− ā) + C × θ (5)

7See the proof of Proposition 1 for details regarding the non-convexity.
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where A,B, and C are expressions dependent on η∗. This is useful because we can interpret the equilibrium

price as a signal of the dividend whose imprecision is driven by the independent, aggregate, and mean-zero

shock ã− ā. Since the various slopes of the pricing function depend on η∗, the degree to which the supply

shock obscures this information depends on the equilibrium acquisition of information. This can be seen

by re-writing the pricing expression as

Rq

C
− A

C
= θ +

B

C
(a− ā) (6)

That is, when investors observe a market price, q, they can transform via a series of constants to arrive

at an expression that can be interpreted as a signal of the fundamental. This signal will have a precision

given by

ρθ =
C2

B2
β

that we will refer to as the market efficiency or price informativeness. Such terminology is common in the

literature, e.g., Ozsoylev and Walden (2011) or Peress (2010).

The first relevant feature of our model that emerges is a distinction between total information and the

information mesh for the purpose of price informativeness. Total information refers to the integration

over all private information collected in the market and is equal to χ+η∗. The information mesh describes

both how much information is acquired in total and the degree to which it is tangled and entwined across

the various networks of investors. It is given by

ˆIM = χ+

(
M − 1 +

(1− ι)2

1− ι2

)
η∗ (7)

The information mesh is fundamentally derived from the non-price component of the posterior information

set of a typical investor. It is driven by (1) the accuracy they observe/collect themselves, χ + η∗, (2) the

accuracy of the information observed in the rest of the network, (M − 1)η∗, and (3) the effective benefit

they derive from the spatial component,8 i.e., [(1− ι)2/(1− ι2)− 1] η∗ ≥ 0, where the inequality holds

true whenever ι ≤ 0 and will be larger the further ι is from zero. The sum of these three terms delivers

the information mesh.
8The exact reason why investors benefit in this way will be explored in Proposition 5 and its associated discussion.
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Total information and the information mesh play different roles in the model, with the latter generally

being more important. This is seen first in Proposition 2.

Proposition 2. Market efficiency, ρθ, is increasing in ˆIM and not necessarily in total information.

In a Verrecchia (1982) model without networks, market efficiency typically moves with total information.

This is because the price reflects shifts in demand driven by the information acquisition undertaken by

individual investors and, in a standard framework, their information is completely private.

3.2 Volatility and Portfolios

In this section, we derive a pair of results that will prove useful both for our later analysis and for

future empirically minded researchers. They require the imposition of only a couple of minor technical

assumptions, which we will maintain throughout.

In particular, we can link the information mesh, which is unobservable but crucial for equilibrium

dynamics, to return volatility and portfolio correlations across investors, both of which are in principle

observable.

We begin with a pair of additional assumptions.

Assumption 1. The overall volatility in the economy is sufficiently large relative to risk-aversion. In

particular,
√
κβ < α

Assumption 2. The following technical condition holds: αā ≈ κθ̄

These assumptions turn out to be sufficient to generate the implication that return volatility falls as

the information mesh thickens. The former ensures that the variance in the price that results from the

noisy supply shrinks as the information mesh thickens; the latter eliminates the impact of the constant A

term in the price, which allows for the closed-form results that follow.

Proposition 3. Return volatility is decreasing in the information mesh.

This is intuitive. As prices become more informative, which happens as the mesh thickens, prices tend

to more accurately reflect the fundamental payoff. This implies less dispersion in returns overall, as prices

are higher when payoffs are higher and lower when payoffs are lower.
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This does not mean that price volatility is necessarily lower. Proposition 3 follows fundamentally

because noise in the price reduces with the information mesh. But this effect may be offset by an increase

in the variance that follows from the price more closely tracking the volatile asset payoff. In fact, it may

happen that the mitigation in return volatility can only occur as a result of prices becoming more volatile.

But from the perspective of investor welfare, return volatility is what matters.

This finding has the additional implication that future researchers might use return volatility as a proxy

for the all-important information mesh, especially in conjunction with the next result, which provides an

alternative measure of the information mesh, i.e., the correlation across investor portfolios:

Proposition 4. The correlation across random investor portfolios is increasing in the information mesh.

By ‘random investors’ here, we mean two randomly drawn investors that are not in the same network,

which is a probability one event when drawing a random pair, as source networks are finite but investors

exist on a continuum. The result would still hold if we conditioned on investors in the same network.

Thus, if empirical researchers exploring a similar environment isolate a factor that simultaneously

reduces return volatility while increasing portfolio correlations, it is likely they are honing in on the

information mesh, which is a monotonic predictor of market efficiency.

4 Analysis: Information Acquisition

With the investment and pricing dynamics well-defined and understood, we are ready to proceed to the

earlier, more pivotal stage: The information acquisition game that is played among investors before in-

vestment takes place.

4.1 Spatial Component

The spatial component of information acquisition generates a powerful externality that influences market

efficiency and welfare. This can be seen first in the following result

Proposition 5. Problem 2 is isomorphic to the following problem

Ui
(
{ηsi(k)}Mk=2

)
= max

0≤ηi≤η̄
E
[
Ui

(
ξ̃i, {z̃si(k)}Mk=1, q̃, {ηsi(k)}Mk=1

)]
− λĈ (ηi; ηj) (8)
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where

1. εi is independent from all other innovations in the source network.

2. ηj = max{ηsi(2), ηsi(3), . . . , ηsi(M)}

3. The cost function9 is given by

Ĉ (ηi; ηj) = C

((√
(1− ι2)ηi −

√
ι2ηj

)2
)

In words, we can represent the problem with spatial searching as a problem without spatial searching

but for which an information cost externality exists. We observe also that the investor always builds on

the work of others; it is never optimal to not exploit this opportunity. We can further say the following

about this new cost function.

Corollary 1. Define η = ι2/(1− ι2)ηj. The information cost function, Ĉ exhibits the following properties

on the domain (η, η̄]

1. Ĉ(η; ηj) = 0.

2. Ĉ ′(η; ηj) = 0.

3. Ĉ ′(η; ηj) ≥ 0 for all η ≥ η.

4. Ĉ ′′(η; ηj) ≥ 0 for all η ≥ η.

5. Ĉ ′(η; ηj) ≤ C ′(η) for all η ≥ η.

We observe a few fascinating properties in this externality. First, the presence of spatial searching makes

some levels of precision free. In particular, those in [0, η]. Further, the marginal cost at η is zero, so the

agent would always choose a bit more information than this provided there is any benefit whatsoever from

doing so.10

Second, the cost function continues to be increasing and convex on the domain over which it applies.

And third, marginal costs in the benchmark model are always lower as a result of the spatial searching.

9This functional form reveals that not all ι can be consistent with a competitive equilibrium. In particular, a cap of ῑ = −1/
√

2 ≈ −.707

is required to ensure effective precision choice remains positive when precisions are homogeneous across investors. This restriction implies that

1− ι2 ≥ ι2.
10It is worth noting that this does not eliminate corner solutions. It can be, and often is, the case that the additional consumption volatility

induced by any information acquisition in the first stage makes the agent worse off.
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All of these imply the following.

Corollary 2. The information mesh thickens as ι falls away from zero.

Thus, the spatial component generates a significant positive externality that boosts information acqui-

sition efforts for all investors, which in turn increases the information mesh. All of the previous results are

then implied, i.e., increased market efficiency, reduced return volatility, etc.

4.2 Network Comparative Statics

Having established that the information mesh is the most relevant object, it is clear that the most relevant

comparative static for our purposes is how the information mesh responds to changes in network intercon-

nectedness, i.e., M . The answer is not obvious as there are multiple forces acting on the information mesh.

An increase in M mechanically increases the information mesh fixing η, but η will not generally remain

fixed in the process. Free-riding forces will increase, which will work to reduce η in equilibrium. It is also

the case that the average return of the risky asset as well as the implied return and consumption volatility

will influence and be influenced by η as the economy’s networks deepen.

Despite all of this, we can provide a simple sufficient condition that ensures that these offsetting forces

are never large enough to overwhelm the gains to the information mesh that obtain when M increases

information sharing across investors.

Proposition 6. If the information cost, λ, and the initial private information, χ, are both sufficiently

high, then the information mesh is increasing in M .

These conditions are sufficient and not necessary, but the intuition behind them is as follows. If it

were not for the response of the equilibrium prices to changes in η∗, the result would follow without these

conditions. To see this, we present a brief intuitive argument by contradiction. In this hypothetical fixed-

price case, the marginal benefit of acquiring more information would shrink with the information mesh.11

Let us suppose, then, that the information mesh, ˆIM , shrank with M . If this were true, then the overall

marginal benefit of information would increase with M . But the information mesh can only be shrinking

with M if free-riding forces are strong enough to reduce total information (η∗).12 Given the convexity of

11See the proof of Proposition 1 for an argument as to why.
12This is because there is a mechanical increase in the information mesh as M goes up that can only be offset if information acquisition falls.
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the cost function, a reduction in η∗ would imply a strict decrease in the marginal cost. In equilibrium, the

marginal benefit of information must equal the marginal cost of information. Under the assumption that

ˆIM shrinks in response to M growing, the former must increase while the latter strictly decreases, which

is impossible. Thus, it must be that ˆIM increases as M grows when prices are fixed.

The conditions in Proposition 6 ensure that additional general equilibrium effects of the information

mesh on the price are not strong enough to upset this basic argument. A high value of χ works to mute the

derivatives of the pricing coefficients with respect to the information mesh, as it exogenously increases the

information mesh and these expressions are concave in the information mesh. A high value of λ ensures

that the reduction in marginal cost effect described in the previous paragraph dominates any lingering

equilibrium effects from changing prices.

We can see Proposition 6 in action in the example13 in Figure 1. The main impact of the network on

investor behavior regardless of the presence of the spatial component is to induce free-riding. An increase

in the network size causes total information to fall mildly.14 This fall, however, is not so great that it

causes the information mesh to attenuate, as the mesh is also increasing in the raw size of the source

network. Thus, the increased interconnectedness of the network more than overcomes the free-riding. This

thickens the information mesh and, by Propositions 2 and 3, increases market efficiency and reduces return

volatility.

The spatial dynamics are also important here. The positive externality it generates is manifested

strongly. An ι of higher magnitude implies more information collected and a thicker information mesh

relative to the independent case.

ι also governs the size of the free-rider effect as M increases. This can be seen in Figure 2, which gives

the percentage change in equilibrium precision as the network deepens. Universally it is the case that a

more negative ι results in a faster decrease in information efforts as M increases.

The intuition is that a reduction in effort on the part of investor i as a result of free-riding becomes

amplified in equilibrium by virtue of the fact that investor i’s lower precision raises the marginal cost of

13See Appendix B.1 for the parameterization.
14The mild initial increase in η for low levels of N is an equilibrium effect driven by expected return and consumption dynamics that more than

overcome the free-rider effect initially. It is one of those equilibrium price effects whose impact on the information mesh is rendered relatively small

by the conditions of Proposition 6. It is worth noting that despite this, these price effects are nevertheless important for welfare and equilibrium

efficiency and will be discussed in some detail in Section 4.3.
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(a) (b)

Figure 1: Comparative Statics: Network Size

acquiring information for any investor that builds on his work. In equilibrium, this will imply a larger

decrease in precision for all investors.

4.3 Welfare

Networks become functionally irrelevant once information sets are determined. Consequently, they have no

independent impact on the second (investment) stage of the game.15 As such, we focus our analysis on the

preceding information acquisition stage, where the presence of networks significantly impacts equilibrium

dynamics. In the analysis that follows, we will compare the equilibrium values of information acquisition

to their efficient levels conditional on both going on to generate equilibrium prices and demand functions

in the investment stage that follows.

During the information acquisition stage there are three relevant16 externalities that the social planner

accounts for that private investors in a competitive equilibrium do not.

First, investor i does not internalize the fact that his information acquisition reduces the marginal cost of

information acquisition for other investors by providing them a foundation on which to build. By reducing

marginal costs in this way, this externality generates more information acquisition ceteris paribus.

15For a treatment of the efficiency properties of the investment stage of a similar model (albeit without networks), we refer the reader to Pavan

et al. (2022).
16There are more externalities than these, but these are the ones necessary to understand the intuition of the welfare analysis.
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Figure 2: Free-Riding Across ι

Second, there is a pecuniary externality. Investors do not internalize that their choice of ηi will impact

both the average return and, through it, the implied volatility of investment in response to the fundamental.

Third, there is a learning externality. Investors do not internalize that their choice of ηi will influence how

informative the price will be in equilibrium, as they take the pricing structure (and hence its information

content) as given.

The social planner’s problem addresses these externalities by amending Problem 2 as follows: (1) The

social planner maximizes the same objective by selecting all {ηi}i∈[0,1] simultaneously, as opposed to just

one at a time, and (2) the social planner treats the pricing terms, i.e., A, B, and C, as functions of {ηi}i∈[0,1]

as opposed to taking them as fixed.

As a result of these myriad externalities and in contrast to the competitive equilibrium, the social

planner’s problem is highly non-convex and thus difficult to characterize analytically. However, it is quite

easy to construct numerical examples17 and to get a sense of how these competing externalities affect the

solution.

It is easiest to understand the difference between the efficient allocation and the equilibrium one by

17We use global solution methods when solving the planner’s problem numerically to account for the non-convexities driven by the various

externalities. Parameter choices are found in Appendix B.1.
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exploring the role of the C-term in the pricing function, which pre-multiplies the asset payoff itself. C

serves two important functions. First, it is key in determining how much of the variance in the price is due

to payoff fluctuations as opposed to noise. Second, it governs the average expected return, as the average

gross return is decreasing in C. Of equal importance is the fact that a larger average gross return implies

larger swings in optimal investment and thus consumption volatility in the investment stage.

It is also the case that C is directly related to the information mesh. In particular, as the information

mesh thickens, C increases.18 This lowers the average return as well as investment and consumption

volatility.

We find that the equilibrium tends to ‘overreact’ to the informativeness of the market. When χ is

low, which exogenously reduces the information mesh, we get a low value of C. This implies high average

returns, but also a great deal of investment and consumption volatility. Given how volatile consumption

already is, private investors do not wish to invest any more in private information, as this will generate

even more volatility in the second stage.19 As such, they set η∗ = 0, which is a corner solution in which no

mimickable signals are collected and total information, as well as the information mesh, is just given by χ.

Investors do not internalize the fact that additional information acquisition will, in equilibrium, reduce

their consumption volatility. This happens by means of two channels. First, prices become more informa-

tive as market efficiency will rise. This reduces the effective uncertainty to which the investors are exposed

in the investment stage. Second, the average return itself decreases and, with it, the magnitude of the

swings in the investment positions. The planner realizes these effects, however, and would account for

them by forcing investors to acquire some information. This effect can be observed in Figure 3.

The opposite occurs when χ is high, however. In this case, prices are exogenously very informative and

returns are expected to be lower. This implies that there is relatively little investment and consumption

volatility. Investors can afford to shoulder a bit more of the consumption risk that comes from more

accurate signals. Thus, they invest even more in private information.

In equilibrium, though, this makes expected returns too low, which reduces the welfare of all investors.

The planner can do better by reducing information acquisition all the way to the corner of zero.20 This

18See Appendix A for an argument.
19The signals generated by the private information will reduce uncertainty ex post, but ex ante it introduces additional shocks into the investment

policy.
20In all cases we examined, we never encountered a solution in which the equilibrium and efficient allocations were jointly were either both
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(a) (b)

Figure 3: Efficiency Results: χ = 1.0

effect can be observed in Figure 4.

(a) (b)

Figure 4: Efficiency Results: χ = 5.0

Importantly, the magnitude of this over-investment is determined in large part by the network and

the spatial component. Figure 5 reveals that the gap between the efficient allocation and the equilibrium

corners or both interior. In all cases we could examine, we found inefficiently low information levels for low χ that eventually became inefficiently

high as χ increased. This switch would only take place when the equilibrium would leave a corner solution and, at the same time, the planner’s

solution would degenerate into one.
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widens acutely as the network grows. It also reveals that a substantive part of this widening is due to

the spatial component making information too cheap, as can be seen in the tight linkage between the

information mesh and the welfare cost.

Figure 5: Welfare Results: χ = 5.0

These results suggest that policy implementation designed to rectify market inefficiencies would be

difficult in such a market. Whether there is significant over or under-investment in information largely

depends on the aggregate quantity of hidden information, which is a notoriously difficult thing to measure

empirically. Further, the inefficiencies arise as a product of several externalities, and not just one. Thus,

a policy-maker would likely require several interactive policy instruments.

5 Conclusion

In this paper, we explored a competitive financial market with endogenous information acquisition and

social networks. We demonstrated that the information mesh, not total information, is the crucial informa-

tion variable that governs market efficiency. Further, how the information mesh responds to key parameter
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changes depends critically on the magnitude of the information production externality.

A natural next step is for empirical researchers to take up the task of exploring some of the model’s key

predictions. It is easy to show that return volatility or portfolio correlations could be used as a proxy for

the information mesh in such exercises.
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A Proofs

We will not prove the results in the chronological order presented in the paper, but rather in the most

natural order in which to solve the model. Thus, we will begin with the isomorphism result for the spatial

component and use it in the solution of the rest of the model.

A.1 Proof of Proposition 5

To establish this, we first analyze investor i’s signal.

zi = θ +
1
√
ηi
εi

where εi is a standard normal. Since εi is correlated with εj, though, we can alternatively express this as

zi = θ +
1
√
ηi

[
ιεj +

√
1− ι2ε̂i

]
︸ ︷︷ ︸

εi

where ε̂i is a standard normal that is uncorrelated to all other shocks. We can substitute in εj = (zj−θ)
√
ηj

and manipulate it to derive the effective information content of the correlated signal, i.e.,

zi − ιzj
√

ηj
ηi

1− ι
√

ηj
ηi

= θ +

√
1−ι2
ηi

1− ι
√

ηj
ηi︸ ︷︷ ︸

1/
√
η̂i

ε̂i

We observe that, because of the correlation, the agent takes the (transformed) difference between his

signal and the one on which he built. This supplants his original signal with another with precision η̂i. It’s

also clear that when ι goes to zero, this expression boils down to investor i’s original signal, as one would

expect.

We can manipulate the expression for η̂i as follows

√
η̂i =

√
ηi − ι

√
ηj√

1− ι2

which implies that η̂i ≥ ηi provided ι ≤ 0, i.e., the agent effectively ‘gets’ more precision than he pays for by

building off of j’s signal. This is driven by two components. There is an uncertainty reduction component

24



in the denominator that increases η̂i regardless of the sign of ι, and there is a direction component in the

numerator that will only increase η̂i if ι ≤ 0. If the correlation was positive, this would work instead to

reduce the new posterior precision, as the new signal will tend to reveal information that has already been

revealed.

If ι was positive, it would be ambiguous which effect would dominate, i.e., the uncertainty reduction

or the direction effect. Under our assumption of a negative ι, though, these two forces work together to

unambiguously increase posterior precision. For this reason, investors will always choose to build on the

work of others when given the choice.

It is also easy to manipulate this further to derive an expression of ηi in terms of η̂i

ηi =
(√

(1− ι2)η̂i + ι
√
ηj

)2

=⇒ ηi =
(√

(1− ι2)η̂i −
√
ι2ηj

)2

(A.1)

where the last equality follows from the fact that ι ≤ 0.

The proposition follows from the fact that an agent paying for an iid precision η̂i is achieved by paying

for a correlated signal ηi which will always be less that η̂i. The relationship between the two is given

by Equation A.1, which is where the new cost structure comes from. It is further observed in this last

expression that greater values of ηj will lead to lower effective costs, so the agent will always build off of

the most precise signal in his information set.

It is fairly straightforward to derive the properties outlined in Corollary 1. First, we observe that the

cost will only be defined when
√

(1− ι2)η̂i ≥
√
ι2ηj, which establishes the lower bound η described in the

proposition. It is also worth noting that when Ĉ(η; ηj) = 0, so choosing this lower bound is costless.

It is also obvious that ηi is increasing in η̂i, and thus Ĉ is an increasing function whenever η̂i ≥ η.

Nevertheless, it will be worthwhile to take the first-order condition for three reasons: First, to inspect its

value at η; second, to inspect how the marginal cost is impacted by the efforts of investor j; and third, to

lay the groundwork for a second-order condition to verify convexity. The first-order condition is

∂Ĉ

∂η̂i
= C ′(ηi)× 2×

(√
(1− ι2)η̂i −

√
ι2ηj

)
× 1

2

√
1− ι2 × η̂−1/2

i
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This expression is always positive and, further, equals zero at η̂i = η. It’s also straightforward to see that

(because ηi is decreasing in ηj)

∂2Ĉ

∂η̂i∂ηj
≤ 0

i.e., the marginal cost of i’s effective precision is falling in the efforts of j.

Finally, we derive the second-order condition as follows:

∂2Ĉ

∂η̂2
i

= C ′′(ηi)×

(
(1− ι2)−

√
ι2(1− ι2)ηj

η̂i

)2

+ C ′(ηi)×
(√

ι2(1− ι2)ηj

)
× 1

2
× η̂−3/2

i ≥ 0

which establishes convexity.

To see Corollary 2, we observe that, due to the convexity of Ĉ, the drop in the marginal cost associated

with ι falling away from zero will increase the optimally chosen level of η̂i (and thus ηi). This is verified by

the fact that the marginal benefit of precision will always be weakly decreasing, a result that we establish

in the proof of Proposition 1.

A.2 Proof of Propositions 1 and 2

Observe that under CARA preferences, the FONC implies that the optimal investment policy has the form

b∗i =
1

αVari(θ̃)
×
[
Ei
[
θ̃
]
− qR

]
where the subscript i denotes an expectation or variance taken with respect to the investor’s information

set.

To solve for the equilibrium, we follow Admati (1985) and take a guess-and-verify approach. In partic-

ular, we conjecture a linear pricing rule of the form

Rq(a, θ) = A+B × (a− ā) + C × θ

for real constants A,B, and C. The first convenient thing about this is that it allows us to treat the price
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as a signal of θ with the noise coming from the supply shock/noise traders,

Rq

C
− A

C
= θ +

B

C
(a− ā)

The precision of this signal will be the inverse of the variance of the mean-zero noise, i.e., C2

B2β.

The Gaussian structure of the signals (including the aggregate price) allows for a convenient description

of the conditional variances, also described by Veldkamp (2011) among others, i.e.,

θ|ξi, {zsi(k)}Mk=1, q ∼

N


χξi +

∑M
k=2 ηsi(k)zsi(k) + η̂i

(
zi−ιzj

√
ηj
ηi

1−ι
√
ηj
ηi

)
+ C2

B2β
(
Rq
C
− A

C

)
+ κθ̄

χ+
∑M

k=2 ηsi(k) + η̂i + C2

B2β + κ
,

1

χ+
∑M

k=2 ηsi(k) + η̂i + C2

B2β + κ


where we invoke the notation defined in the proof of Proposition 5 and their associated results, namely

the definition of η̂i (which can be constructed from ηi, ηj, and ι) and the fact that the investor constructs

a more precise signal by comparing it to zj, which we take to be the signal of the source with the most

precision in the network, i.e., the highest ηj.

Plugging these expressions into the policy function delivers a policy rule21 in terms of fundamental

parameters.

b∗i =
χ+

∑M
k=2 ηsi(k) + η̂i + C2

B2β + κ

α
×


χξi +

∑M
k=2 ηsi(k)zsi(k) + η̂i

(
zi−ιzj

√
ηj
ηi

1−ι
√
ηj
ηi

)
+ C2

B2β
(
Rq
C
− A

C

)
+ κθ̄

χ+
∑M

k=2 ηsi(k) + η̂i + C2

B2β + κ
− qR


The goal here is to find the parameters A,B, and C, that ensure market clearing. Given that all private

signals conditional on θ are independent, this can be done easily enough by imposing market clearing given

this policy function together with the restriction that every agent invests the same η∗ as follows:

21If we substitute in later expressions for A,B, and C, it is straightforward to observe that this demand curve is always downsloping. This

follows from the risk-aversion of the investors and is worth noting as Pavan et al. (2022) argue that the sign of the slope of the demand curve can

impact the efficiency properties of a similar model.
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αa =

Ei

[
χξ̃i +

M∑
k=2

ηsi(k)z̃si(k) + η̂i

 z̃i − ιz̃j
√
ηj
ηi

1− ι
√
ηj
ηi

+
C2

B2
β

(
Rq(a, θ)

C
−
A

C

)
+ κθ̄ −Rq(a, θ)

(
χ+

M∑
k=2

ηsi(k) + η̂i +
C2

B2
β + κ

)
|θ, q(a, θ)


If we evaluate this conditional expectation and impose that all ηk = η∗ for any k ∈ [0, 1] (which implies

that η̂i = η∗(1− ι)2/(1− ι2) > η∗) then we arrive at

αa =

(
χ+

(
M − 1 +

(1− ι)2

1− ι2

)
η∗
)
θ +

C2

B2
β

(
Rq(a, θ)

C
−
A

C

)
+ κθ̄ −Rq(a, θ)

(
χ+

(
M − 1 +

(1− ι)2

1− ι2

)
η∗ +

C2

B2
β + κ

)
=⇒ Rq(a, θ)×

[(
C2

B2

)
β

C
−
(
χ+

(
M − 1 +

(1− ι)2

1− ι2

)
η∗ +

C2

B2
β + κ

)]
= αa− κθ̄ −

(
χ+

(
M − 1 +

(1− ι)2

1− ι2

)
η∗
)
θ +

(
C2

B2

)
βA

C

=⇒ Rq(a, θ) =
αā− κθ̄ +

(
C2

B2

)
βA
C(

C2

B2

)
β
C
−
(
χ+

(
M − 1 +

(1−ι)2
1−ι2

)
η∗ + C2

B2 β + κ
)

︸ ︷︷ ︸
A

+
α(

C2

B2

)
β
C
−
(
χ+

(
M − 1 +

(1−ι)2
1−ι2

)
η∗ + C2

B2 β + κ
)

︸ ︷︷ ︸
B

×(a− ā)

+
−
(
χ+

(
M − 1 +

(1−ι)2
1−ι2

)
η∗
)

(
C2

B2

)
β
C
−
(
χ+

(
M − 1 +

(1−ι)2
1−ι2

)
η∗ + C2

B2 β + κ
)

︸ ︷︷ ︸
C

×θ

This gives us three equations: A equals the first term, B equals the second, and C equals the third. Most

immediate in the solution is the term C
B

since the denominators of these terms cancel leaving

C

B
=
−
(
χ+

(
M − 1 + (1−ι)2

1−ι2

)
η∗
)

α
=⇒ C2

B2
β = ρθ =

ˆIM
2
β

α2
(A.2)

This term happens to be market efficiency as well given how we interpret the price as a signal. Thus

Equation A.2 immediately establishes that Proposition 2 holds in any equilibrium, as it is quadratic in the

(always positive) information mesh.

Given its pivotal role, it will be convenient for us to substitute in ˆIM for the information mesh terms

from here on, i.e.,
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With this, we can solve easily for the third term, C, i.e.,

C =
− ˆIM(

ˆIM
2

α2

)
β
C
−
(

ˆIM +
ˆIM

2

α2 β + κ
)

=⇒ − ˆIM =

(
ˆIM

2

α2

)
β −

(
ˆIM +

ˆIM
2

α2
β + κ

)
C

=⇒ C =
ˆIM +

ˆIM
2

α2 β

ˆIM + κ+
ˆIM

2

α2 β

=⇒ C =

1 + κ

[
ˆIM +

ˆIM
2

α2
β

]−1
−1

Notice that C is also increasing in the information mesh. This is relevant for the analysis in Section 4.3.

Further, with C in hand, we can solve for B

B =
−α
ˆIM
C

=⇒ B = − α

ˆIM
×

1 + κ

[
ˆIM +

ˆIM
2

α2
β

]−1
−1

=⇒ B = −α

 ˆIM + κ

[
1 +

ˆIM

α2
β

]−1
−1

And finally, we can solve for A

=⇒ A =
κθ̄ − αā(

ˆIM +
ˆIM

2

α2 β + κ
)

We have shown now that A,B, and C are uniquely determined for a given η∗ (as η∗ uniquely determines

ˆIM). Now we can go back to the information acquisition game, from which we can derive the remaining

results. We begin by demonstrating a useful lemma:

Lemma 1. The second-order approximation to Problem 2 is a well-defined problem with a solution governed

either (1) by first-order necessary condition combined with an additional sufficiency condition that can

always be satisfied or (2) by a corner solution of η∗i = 0.

Proof. We begin by deriving the second-order approximation to the objective function assuming that

investor i builds on source si(2)’s information. We build on the insights of Proposition 5 and express the
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problem in terms of η̂i = (
√

(1− ι2)ηi −
√
ι2ηsi(2))

2. Note that the agent takes ηsi(2) as given.

Ei [− exp (−αc̃i)]

= Ei
[
− exp

(
−α
[
w0R + b̃i ×

(
θ̃i − q̃R

)])]
= − exp (−αw0R)Ei

− exp

−α×
(
Ei
[
θ̃i|q̃, ξ̃i, {z̃si(k)}Mk=1

]
− q̃R

)(
θ̃i − q̃R

)
αV ari(θ̃i|q̃, ξ̃i, {z̃si(k)}Mk=1)



= − exp (−αw0R)Ei


− exp



−

[
χ+

M∑
k=2

ηsi(k) + η̂i +
C2

B2
β + κ

]
︸ ︷︷ ︸

“P (η̂i)′′

×

χξ̃i+∑M
k=2 ηsi(k)z̃si(k)+η̂i

[
z̃i−ιz̃j
√

ηsi(2)
/ηi

1−ι
√

ηsi(2)
/ηi

]
+C2

B2 β[
q̃R
C
−A
C ]+κθ̄

χ+
∑M
k=2 ηsi(k)+η̂i+

C2

B2 β+κ
− q̃R

×
[
θ̃ − q̃R

]




Where the last line builds on the fact that investor i’s signal is derived by taking the difference with the

signal from si(2). From here, we add zero to the second term in the product embedded in the exponential

function by adding −θ̃P (η̂i)/P (η̂i) + θ̃. This simplifies the expression significantly by turning all of the

signals in the numerator of this term into iid innovations instead.

Ei [− exp (−αc̃i)]

= − exp (−αw0R)Ei

− exp


−P (η̂i)×[

χν̃i+
∑M
k=2 ηsi(k)ε̃si(k)+η̂i

˜̂εi+
C2

B2 β×
B
C

[ã−ā]+κ(θ̄−θ̃)
P (η̂i)

+ θ̃ − q̃R
]
×[

θ̃ − q̃R
]




Now, if we plug in the equilibrium linear pricing expression qR = A + B(a − ā) + Cθ and pull shock

volatilities out of the innovations such that all shocks become standard and independent normals (denoted
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by sn), we finally derive an expression for welfare given by

Ei [− exp (−αc̃i)]

= − exp (−αw0R)Ei

exp


[
A+ B√

β
sn(ã)− (1− C)

(
θ̄ + 1√

κ
sn(θ̃)

)]
×[

−
(
A+ B√

β
sn(ã)− (1− C)

(
θ̄ + 1√

κ
sn(θ̃)

))
× P (η̂i)+

√
χsn(ν̃i) +

∑M
k=2

√
ηsi(k)sn(ε̃si(k)) +

√
η̂isn(ε̃i) +

√
κsn(θ̃)

]



In this form, the objective function is primed and ready for a second-order approximation over all the

(now) iid, standard normal shocks. The tremendous convenience of this approach will be that all linear

and cross-partial terms will disappear, leaving only the constant and some second-order (variance) terms

in the final expression.

Taking a second-order approximation around the mean of the standard normal innovations and following

this by taking of an expectation over them yields a relatively simple expression, i.e.,

E
[
Ûi(ηi)

]
=− exp (−αw0R)× exp

(
−
[
A− (1− C)θ̄

]2
P (ηi)

)
× (A.3)[

1− B√
β

(
B√
β
P (ηi)−

C

B

√
β

)
− 1− C√

κ

(
1− C√

κ
P (ηi) +

√
κ

)]
where

P (ηi) = χ+
M∑
k=2

ηsi(k) + ηi
(1− ι)2

1− ι2
+
C2

B2
β + κ

is a measure of the total precision with which the agents infer the fundamental asset value. Notice that we

substitute in ηi for η̂i, which will allow us to later impose the symmetry restriction that η is the same for

all agents. P (ηi) is linear in ηi, which is under the agent’s control. Also, it is noteworthy that the signal

constructed by ηi is generally more precise as a result of the negativity of ι, i.e., the agent learns more

from his own signal than he does from the others in his network precisely because he is allowed to build on

one of these sources.

This objective function is non-concave, but nevertheless it is easy to show that first-order conditions are
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necessary and, with one additional requirement, sufficient. To see this observe first the first-order condition

∂E
[
Ûi

]
∂ηi

=
(1− ι)2

1− ι2
exp (−αw0R) exp

(
−
[
A− (1− C)θ̄

]2
P (ηi)

)
×[[

A− (1− C)θ̄
]2(

2C −
(
B2

β
+

(1− C)2

κ

)
P (ηi)

)
+

(
B2

β
+

(1− C)2

κ

)]
︸ ︷︷ ︸

X(P (ηi))

This expression is strictly positive provided the that we call X(P (ηi)) is positive. X(P (ηi)) is linear and

decreasing, which implies that either

1. If X(P (0)) ≤ 0, then the objective function is always decreasing and the corner solution of ηi = 0 is

optimal.

2. If X(P (0)) > 0, then there will be some threshold, P ′ ≥ 0 where X(P ′) = 0 and beyond which

marginal utility becomes negative and, thus, the objective decreasing. Thus, we know that the

investor will always choose something less than this P ′.

In the case of a possible interior solution, the second-order condition for this problem becomes relevant

and is given by

∂E
[
Ûi

]2

∂2ηi
=− exp (−αw0)

(
(1− ι)2

1− ι2

)2

× exp
(
−
[
A− (1− C)θ̄

]2
P (ηi)

)
×[[

A− (1− C)θ̄
]2 [

X(P (ηi)) +

(
B2

β
+

(1− C)2

κ

)]]
It is clear to see that the problem will also be concave so long as the objective is increasing, i.e., X(P (ηi)) ≥

0.

Intuitively, the objective function must resemble one of the shapes given in Figure 6. The condition

that X(P (ηi)) ≥ 0 implies that the objective is increasing at that particular ηi. The case of Figure 6a

(combined with the fact that marginal costs at ηi = 0 are zero by assumption) will deliver an interior

solution while the case of Figure 6b will deliver a corner solution at zero (despite the fact that marginal

costs are zero at ηi = 0).

Since the cost function is convex, this implies that a first-order condition is both necessary and sufficient
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(a) X(P (0)) ≥ 0

 

(b) X(P (0)) < 0

Figure 6: Possible Equilibrium Objectives as Functions of ηi

for optimality provided we add one additional condition. Namely that the η∗i that satisfies

∂E
[
Ûi

]
∂ηi

(η∗i ) =λC ′(η∗i ) (A.4)

and X(P (η∗i )) ≥ 0

If it is ever the case the X(P (ηi)) < 0 for all ηi ≥ 0, then the objective function is always decreasing in

ηi and the solution will be the corner solution of ηi = 0. But if there is some interval on which this term

is positive, then the solution will be interior and unique and governed by the conditions above.

In our analyses, we will restrict attention the non-degenerate cases for which the solution is governed

by Equations A.4. In particular, equilibrium levels of information acquisition will be those that satisfy this

expression when ηsi(k) = η∗ for k = 1, . . . ,M .

Numerically, we compute equilibria as follows. First, we check whether X(P (0)) ≤ 0. If it is, then the

only possible equilibrium is η∗ = 0 and the equilibrium is unique.

If X(P (0)) > 0, we use a non-linear solver to find values of η∗ that satisfy the first expression in Equation

A.4. If the solution also satisfies the second expression, then we are done. If not, then we search on the
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smaller area between zero and the previous η∗. By the intermediate value theorem and the concavity of Û

and the convexity of C in this region, a unique η∗ must exist.

This procedure also establishes the uniqueness of the competitive equilibrium. We have already estab-

lished that the pricing function is unique conditional on η∗, and now we have established that, fixing all

fundamentals, the equilibrium value of η∗ must also be unique.

A.3 Proof of Proposition 3

Proof. We will show this by deriving a formula relating the variance of the log-returns to private information

precision. We’ll begin by multiplying the return variance by 1/R2, which will not affect this response but

will prove convenient for derivations.

V ar

(
log

(
θ̃

q̃R

))
= V ar

(
− log

(
1 +

(
A

θ̃
+
B(ã− ā)

θ̃
+ C − 1

)))
≈ V ar

(
A

θ̃
+
B(ã− ā)

θ̃
+ C − 1

)
≈ V ar

(
A

θ̃
+
B(ã− ā)

θ̃

)
Where the penultimate line follows from (1) the first-order approximation that log(1 + x) ≈ x when x is

close to zero, which it will be since θ/(qR) will be gross excess returns in the neighborhood of one and (2)

the fact that V ar(X) = V ar(−X). The final line follows from the fact that C − 1 is constant. From this

point, by the law of total variance we can express this as

V ar

(
log

(
θ̃

q̃R

))
≈ E

[
V ar

(
A

θ
+
B(ã− ā)

θ
|θ̃ = θ

)]
+ V ar

(
E
[
A

θ
+
B(ã− ā)

θ
|θ̃ = θ

])
≈ B2

β
E
[

1

θ̃2

]
+ A2V ar

(
1

θ̃

)
Assumption 1 is sufficient to ensure that the derivative of B with respect to ˆIM is positive. Because B < 0,

this implies that as the information mesh thickens, B2 attenuates toward zero, which reduces volatility.

To see this, note that

∂B

∂ ˆIM
=

α(
ˆIM + κ

1+
ˆIM
α2

β

)2 ×

1−
κβ
α2(

1 +
ˆIM
α2 β

)2
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which will be positive provided (
1 +

ˆIM

α2
β

)2

>
κβ

α2

which will always be true under Assumption 1, as it ensures that the right-hand side is less than one while

the left-hand side is always greater than one.

Assumption 2 simply eliminates the impact of the constant A term.

A.4 Proof of Proposition 4

To get at the correlation across investor portfolios, we look at the covariance of their forecasts for the

fundamental, θ, as (1) all investors have the same forecast errors despite getting different signals and (2)

conditional on having the same forecast error, investment strategies differ only by Ei
[
θ̃
]
. Thus, we’re

looking at the following covariance for i and j, neither of which is another’s source nor do they share any

common sources (as this would happen with probability zero in a random draw).

Cov
(
Ei
[
θ̃
]
,Ej

[
θ̃
])

=

Cov

(
χξi +

∑M
k=2 ηsi(k)zsi(k) + η̂iẑi + C2

B2β
(
Rq
C
− A

C

)
+ κθ̄

χ+
∑M

k=2 ηsi(k) + η̂i + C2

B2β + κ
,
χξj +

∑M
k=2 ηsj(k)zsj(k) + η̂j ẑj + C2

B2β
(
Rq
C
− A

C

)
+ κθ̄

χ+
∑M

k=2 ηsj(k) + η̂j + C2

B2β + κ

)

=
1

( ˆIM + C2

B2β + κ)2
Cov

(
χξi +

M∑
k=2

ηsi(k)zsi(k) + η̂iẑi +
C2

B2
β
Rq

C
, χξj +

M∑
k=2

ηsj(k)zsj(k) + η̂j ẑj +
C2

B2
β
Rq

C

)

=
1

( ˆIM + C2

B2β + κ)2

(
C2

B2
β

)2

V ar(
Rq

C
) =

C2

B2β

( ˆIM + C2

B2β + κ)2

where ẑi denotes investor i’s signal that he constructs via a difference between his signal and that of his

best source, which features a noise component that is orthogonal to all other shocks in the economy.

In equilibrium, we have an expression for the precision of the price (when viewed as a signal). Plugging
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this in, we get

Cov
(
Ei
[
θ̃
]
,Ej

[
θ̃
])

=
( ˆIM)2

α2 β

( ˆIM +
ˆIM

2

α2 β + κ)2

Now if we normalize by the variance of each of these forecasts, we get the desired correlation across

portfolios:

Corr
(
Ei
[
θ̃
]
,Ej

[
θ̃
])

=
ˆIM

2

α2
β

Thus the correlation across two investment portfolios follows the same trend as the rest of the economy.

In fact, it’s actually exactly equal to price informativeness, which makes sense. Since the only point of

contact for those not networked together is the price, two randomly selected investment portfolios will

look more alike whenever prices are more informative, which is whenever aggregate private information

collection goes up.

A.5 Proof of Proposition 6

We consider first the case in which the equilibrium is interior and then consider the possible corner case of

η∗ = 0. We begin by writing out explicitly the key equilibrium condition, i.e., Equation A.4, without the

X-positivity restriction. This looks as follows.(
1− ι2

(1− ι)2

)
λC ′(η∗) =

(1− C)2θ̄2 exp
(
−(1− C)2θ̄2P

)
×
[
2C −

(
B2

β
+

(1− C)2

κ

)
P

]
+ exp

(
−(1− C)2θ̄2P

) [B2

β
+

(1− C)2

κ

]
︸ ︷︷ ︸

RHS

where

P = ˆIM +
ˆIM

2

α2
β + κ

To demonstrate this result for the interior case, we need only show that this expression dictates that as

M increases ˆIM must also increase. This expression is rather complicated as B and C are also dependent

on ˆIM and will move in accordance with this expression as M increases. As such, it will be most convenient

to differentiate these sub-expressions and collect terms. We denote the derivative of an object, x, with
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respect to M by dMx. We begin with the information mesh itself.

dM ˆIM =

(
M − 1 +

(1− ι)2

1− ι2

)
dMη

∗ + η∗

=⇒ dMη
∗ =

dM ˆIM − η∗

M − 1 + (1−ι)2
1−ι2

The ultimate object of interest for us is dM ˆIM and the last line will allow us to substitute this into dMη
∗,

which will appear on the marginal cost side of the equilibrium condition.

Fortunately, the terms P , B, and C only move with M insofar as the information mesh moves. This

allows us to express their differentiation in M entirely through the differentiation in ˆIM (as well as

exogenous parameters, of course), which is incredibly convenient when the expressions are this convoluted.

We do so as follows. First for the P -term:

dMP =

[
1 + 2 ˆIM

β

α2

]
dM ˆIM

and the C-term:

dMC =

κ(
ˆIM+

ˆIM
2

α2
β

)2

[
1 + 2 ˆIM β

α2

]
(

1 + κ

ˆIM+
ˆIM

2

α2
β

)2 dM ˆIM

and the B-term:

dMB =

 αC

ˆIM
2 −

α

ˆIM

κ(
ˆIM+

ˆIM
2

α2
β

)2

[
1 + 2 ˆIM β

α2

]
(

1 + κ

ˆIM+
ˆIM

2

α2
β

)2

 dM ˆIM

The linearity of dM ˆIM in each of these terms implies that when we differentiate the equilibrium condition

we arrive at (
1− ι2

(1− ι)2

)
λC ′′(η∗)× dM ˆIM − η∗

M − 1 + (1−ι)2
1−ι2

= dIMRHS × dM ˆIM
(

1−ι2
(1−ι)2

)
λC ′′(η∗)

M − 1 + (1−ι)2
1−ι2

− dIMRHS

 dM ˆIM =

(
1−ι2

(1−ι)2

)
λC ′′(η∗)

M − 1 + (1−ι)2
1−ι2

η∗

From this expression we can observe the result. The right-hand side of this expression is clearly positive.
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Thus, dM ˆIM will be positive provided the term in the parentheses on the left-hand side is also positive.

The cost-term clearly is by the convexity of C. Thus, the result holds as long as dIMRHS is small and/or

negative.

While dIMRHS is incredibly convoluted, there are a few things we can say about it. First, if the pricing

terms (B and C here) were fixed, then dIMRHS would be negative. This follows from the convexity of the

objective at the interior as the information mesh is a simple linear transformation of the choice variable

(ηi).

Second, as χ acts as an exogenous lower bound on the information mesh, we can increase it to increase

the value of ˆIM . If we do so, it is clear from the expressions for dMC and dMB that these derivatives

go to zero. Thus, if χ is large, then these equilibrium pricing effects become negligible. These two effects

ensure that dIMRHS is either negative or only mildly positive.

The result is established then by realizing that we can increase λ to ensure that the first (cost-based)

term is always larger than this small-to-negative dIMRHS term, which is independent of λ.

The preceding argument established the monotonicity of ˆIM in M when the equilibrium was interior.

Corner solutions are even easier to see. If the equilibrium is at a corner, then the marginal cost of

information acquisition is larger than the marginal benefit, not equal to it. As M increases, the marginal

cost will remain constant at 0, as M will not directly affect the cost. Also, as M increases, the marginal

benefit will remain the same. This is because η∗ = 0 implies that ˆIM will not change with M . Since ˆIM

does not change with M , neither do P or any of the pricing coefficients. This implies that if the solution

is a corner for any M , it is a solution for all M . Thus, ˆIM is flat in M , which implies that it is (weakly)

monotone in it.

It is worth noting that the restrictions on λ and χ are sufficient but not necessary. In all parameteriza-

tions we sampled, we find the information mesh to be increasing in M .
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B Additional Material

B.1 Example Parameters

For the example in Sections 4.2 and 4.3, we set α = 2.0, ā = 2.0, β = 1.0, κ = 2.0, θ̄ = 2.0, p = 2.0,

and λ = 1.0. In Section 4.2, we also set χ = 5.0 (this parameter is varied and studied in its own right in

Section 4.3). These parameters satisfy Assumptions 1 and 2, but they are not special in ways besides those

examined in the paper, i.e., all alternate parameterizations that we explored that also satisfy Assumptions

1 and 2 share the same basic properties.

B.2 Social Planner’s Problem

We begin by returning to Equation A.3, which is the objective function for the investors in the information-

gather stage. There are several relevant externalities at play here that the social planner accounts for that

private investors do not.

The social planner’s problem addresses these externalities by choosing all η-terms simultaneously (rather

than taking the others as given and choosing one) and by substituting in the equilibrium expressions for

A, B, and C.

Making these substitutions, the social planner’s problem is given by

E
[
ÛSP (η)

]
(A.5)

=− exp (−αw0R)× exp
(
− [1− C(η)]2 θ̄2PSP (η)

)
×
[
2C(η)−

[
B(η)2

β
+

(1− C(η))2

κ

]
PSP (η)

]
where

PSP (η) = χ+

(
M − 1 +

(1− ι)2

1− ι2

)
η +

(
χ+

(
M − 1 + (1−ι)2

1−ι2

)
η
)2

α2
β + κ

where we make use of the fact that Assumption 2 implies that A = 0. The terms B(η) and C(η) are

defined in the proof of Proposition 1.

In contrast to the equilibrium problem, the curvature properties of this objective are much less straight-

forward, so when we search for a solution to the social planner’s problem we search for a global optimum.
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