Deterministic Systems

- Multi-period models are workhorse of macroeconomics
 - Agents make decisions each period, rationally forecasting behavior in future periods
- Example: Multi-Period Consumption-Saving Model

\[
\max_{\{c_t\}_{t=0}^{\infty}, \{b_{t+1}\}_{t=0}^{T-1}} \quad \sum_{t=0}^{T} \beta^t u(c_t)
\]

s.t. \(c_t + b_{t+1} = y_t + (1 + r)b_t \) for \(t < T \)

\(c_T = y_T + (1 + r)b_T \)

- Note \(b_0 \) and \(\{y_t\}_{t=0}^{T} \) are given
- Cannot save or borrow in last period
Solution Method: Backward Induction

1. Find optimal behavior in last period
 • Note this will be a function of b_T
2. Find behavior in penultimate period, using optimal behavior in next period
 • Again, function of b_{T-1}
3. Find behavior in period before that . . .
4. Continue until period 0
Value Functions

- Helpful tool is to define **Value Functions** along the way
- For any $t < T$, we can define it as follows:

$$
V_t(b_t) = \max_{\{c_s\}_{s=t}^T, \{b_{s+1}\}_{s=t}^{T-1}} \sum_{s=t}^T \beta^{s-t} u(c_s)
$$

$$
s.t. \quad c_s + b_{s+1} = y_s + (1 + r)b_s \quad \text{for } s < T
$$

$$
c_T = y_T + (1 + r)b_T
$$

- Note that $V_0(b_0)$ delivers utility from our original problem
- If $\{c^*_s(b_t)\}_{s=t}^T, \{b^*_{s+1}(b_t)\}_{s=t}^{T-1}$ is solution, then

$$
V_t(b_t) = \sum_{s=t}^T \beta^{s-t} u(c^*_s(b_t))
$$
Recursive Representation

- With value functions, we can conveniently write the problem in each period as follows:

\[V_t(b_t) = \max_{b_{t+1}} u(y_t + (1 + r)b_t - b_{t+1}) + \beta V_{t+1}(b_{t+1}) \]

- Once we know \(V_{T-1}(b_{T-1}) \), it’s easy to find \(V_{T-2}(b_{T-2}) \) and so forth

- At each step, we attain \(b^*_{t+1}(b_t) \). Can find consumption with

\[c^*_t(b_t) = y_t + (1 + r)b_t - b^*_{t+1}(b_t) \]

- Solution can be found from \(V_0(b_0) \): Can compute policies along entire trajectory following this

- This general approach to solving dynamic problems is called Dynamic Programming
Solution Method 1: Grids

- Simplest approach

1. Make a grid over b_t for each t: $\mathcal{B} = \{b^0, b^1, \ldots, b^N\}$

2. For each b_t on the grid, search over the grid to find the b_{t+1} that maximizes the recursive value function i.e. $\forall b_t \in \mathcal{B}$

 $$V_t(b_t) = \max_{b_{t+1} \in \mathcal{B}} u(y_t + (1 + r)b_t - b_{t+1}) + \beta V_{t+1}(b_{t+1})$$

3. Yields solution vector $b_t^* \in \mathcal{B}^N$ i.e. easy to store

4. Continue until b_0^*.

- Accuracy (and solution time) increase with N
Example 1: Three Periods

\[
\max_{c_0, c_1, c_2 \geq 0, b_1, b_2} u(c_0) + \beta u(c_1) + \beta^2 u(c_2)
\]

- Subject to same constraints as before
- Try two methods
 1. Simultaneous solution
 2. Backward induction/dynamic programming
- Notice when \(\beta(1 + r) = 1 \), it should be that \(c_0 = c_1 = c_2 \)
- Backward induction scales up more easily than simultaneous solution as \(T \) grows
Solution Method 2: Interpolation

• Grid can sometimes be restrictive, lead to inaccuracies
• Want to be able to pick points off grid
• Linear Interpolation Method
 1. Solve period $T - 1$ on a grid of b_{T-1}, but choosing any b_T
 2. For b_{T-1} off grid, define the value function as straight line connecting nearest grid points
 3. Solve period $T - 2$ on a grid of b_{T-2}, but choosing any b_{T-1}
 4. . .

• Formula: If $b_{t+1} \in (b^n, b^{n+1})$

$$V_{t+1}(b_{t+1}) = V_{t+1}(b^n) + \left[\frac{V_{t+1}(b^{n+1}) - V_{t+1}(b^n)}{b^{n+1} - b^n} \right] \times (b_{t+1} - b^n)$$
Linear Interpolation
Extrapolation

• How to deal with points above/below whole grid?
• Two approaches
 1. Restrict them in the problem
 2. Continue first/last interior interpolation lines
• (1) is nice when possible!
• Often (2) is necessary; example later
Other Interpolations

- More sophisticated technique is a *spline* interpolation
- Splines are piecewise polynomials of order 2 or higher
 - Idea: Keep function smooth/differentiable at kinks
- Cubic spline most popular: If we have a set \((x_i, y_i)_{i=0}^{n}\), approximate each \([x_i, x_{i+1}]\) interval with a cubic
 \[
y = a_i + b_i x + c_i x^2 + d_i x^3
 \]

- 4n coefficients: Point conditions and 1st/2nd derivative conditions \(\implies\) Linear system

 1. \(y_i = a_i + b_i x_i + c_i x_i^2 + d_i x_i^3\) (\(i = 1, \ldots, n\))
 2. \(y_i = a_{i+1} + b_{i+1} x_i + c_{i+1} x_i^2 + d_{i+1} x_i^3\) (\(i = 0, \ldots, n - 1\))
 3. \(b_i + 2c_i x_i + 3d_i x_i^2 = b_{i+1} + 2c_{i+1} x_i + 3d_{i+1} x_i^2\) (\(i = 1, \ldots, n - 1\))
 4. \(2c_i + 6d_i x_i = 2c_{i+1} + 6d_{i+1} x_i\) (1, \ldots, \(n - 1\))

- Two conditions free: Often chosen setting \(s'(x_0) = s'(x_n) = 0\)
Life Lessons

- In solving models, always look for model-specific shortcuts.
- Often more useful in speeding up computation than any supercomputer.
- In our case, exploit the Euler Equation when $\beta(1 + r) = 1$:

$$u'(c_t) = \beta(1 + r)u'(c_{t+1}) \implies c_t = \bar{c} \quad \forall t$$

- Put this together with the lifetime-budget constraint to get the solution:

$$\bar{c} = \frac{1}{1 - (1 + r)^{-T-1}} \left(\frac{r}{1 + r} \right) \times \left[(1 + r)b_0 + \sum_{t=0}^{T} \left(\frac{1}{1 + r} \right)^t y_t \right]$$

- Faster and better objective than any other method so far!
Extending the Horizon

• Take limit as $T \to \infty$...

$$\max_{\{c_t\}_{t=0}^{\infty} \geq 0, \{b_{t+1}\}_{t=0}^{T-1}} \sum_{t=0}^{\infty} \beta^t u(c_t)$$

s.t. $c_t + b_{t+1} = y_t + (1 + r)b_t$

• What happens to last period condition? Need something to tie it down
 • Need to prevent *Ponzi schemes*: Rolling over borrowed money ad infinitum
 • Can achieve infinite utility with Ponzi schemes if not ruled out...
Ruling Out Ponzi Schemes

- Look at Lifetime BC of finite-horizon case:

\[NPV(\{c_t\}_{t=0}^T) = (1+r)b_0 + NPV(\{y_t\}_{t=0}^T) + \left(\frac{1}{1+r}\right)^T B_{T+1} \]

- To get a ‘sensible’ Lifetime BC, need only that

\[\lim_{T \to \infty} \left(\frac{1}{1+r}\right)^T B_{T+1} \]

i.e. \(B_{T+1} \) cannot grow exponentially at a rate faster than \(r \)

- Call this the No-Ponzi Condition
 - Can be satisfied even if \(\lim_{T \to \infty} B_{T+1} > 0 \)
 - Past problem plus No-Ponzi Condition is well-defined
Solving

- How do we solve the infinite-horizon problem?
 - Backward induction directly no good...no terminal period
 - Not entirely true...more on this later!

- Last finite-horizon method will still work for some utilities e.g. log-utility

\[EE : \quad c_{t+1} = \beta (1 + r) c_t \]

\[\implies NPV(\{c_t\}_{t=0}^\infty) = c_0 \sum_{t=0}^\infty \beta^t = \frac{c_0}{1 - \beta} \]

\[\implies c_0 = (1 - \beta) \times [(1 + r)b_0 + NPV(\{y_t\}_{t=0}^\infty)] \]

- Does not require that \(\beta(1 + r) = 1 \)
Solving: Shooting Algorithm

• If it doesn’t happen that we can solve as above, we need another strategy

• Try to *solve it forward*: Bisection over c_0
 1. Conjecture a solution for the optimal c_0
 2. Iterate forward with the budget constraint/Euler Equation
 3. Check it at a large T: See if No-Ponzi Condition holds (approximately)
 • If it holds, we’re done
 • If b_T too large, increase c_0 in next guess
 • If b_T too large (negatively), reduce c_0 in next guess

• Starting from b_t, conjecture a c_t and iterate forward with

\[
\begin{align*}
 b_{t+1} &= y_t + (1 + r)b_t - c_t \\
 c_{t+1} &= u'^{-1} \left(\frac{u'(c_t)}{\beta(1 + r)} \right)
\end{align*}
\]

Equation (2) may need to be done numerically (not always)
Alternate Model: NCG Model

- Endogenize y_t process; save in capital instead of b_t
- Solve social planner’s problem (economy efficient)
- $y_t = f(k_t)$
 1. $f(0) = 0$
 2. $f'(k_t) > 0$
 3. $f''(k_t) < 0$
- Capital depreciates at rate δ. k_0 given

$$\max_{\{c_t\}_{t=0}^\infty, \{k_{t+1}\}_{t=0}^\infty} \sum_{t=0}^\infty \beta^t u(c_t)$$

subject to:

$$c_t + k_{t+1} = f(k_t) + (1 - \delta)k_t$$
NCG Model: Solution Characterization

1. Euler Equation

\[u'(c_t) = \beta [1 - \delta + f'(k_{t+1})] u'(c_{t+1}) \]

2. Resource Constraint

\[c_t + k_{t+1} = f(k_t) + (1 - \delta)k_t \]

- Can iterate like before on \((c_0, k_0)\)
- Terminal condition? Transversality condition

\[\lim_{t \to \infty} \frac{k_{t+1}}{\beta^t} u'(c_t) = 0 \]

- Like a FOC ‘at \(t = \infty\)’
- Prevents sub-optimal ‘hoarding’ of capital
NCG Model: SS Lines and Trajectories

- Steady state lines: Set $EE = 0$ and $BC = 0$
- Trajectories easy to derive on either side of SS line
NCG Model: Shooting Algorithm

- Only SS solution will satisfy TVC in long-run
- Search for \(c_0(k_0) \) that sends system ratcheting to steady state
- This trajectory is unique (saddle-path stable)
- This problem is recursive! Delivers time-invariant solution along an endogenous grid:

\[
\begin{align*}
c^*(k_t) &= c_t(k_t) \quad \forall k_t
\end{align*}
\]

- Could interpolate in between endogenous grid points for approximation to full-solution
The NCG Model Revisited

• Backward induction? How do we do it without a terminal period?
• Recall finite-horizon approach. For any $t < T$, equivalent problem:
\[V_t(k_t) = \max_{k_{t+1} \geq 0} u(f(k_t) + (1 - \delta)k_t - k_{t+1}) + \beta V_{t+1}(k_{t+1}) \]

• In infinite-horizon model, t should be irrelevant
 • Should be the case that
 \[V(k) = \max_{k' \geq 0} u(f(k) + (1 - \delta)k - k') + \beta V(k') \]
 • Solution $k'(k)$ should exactly be $k_1(k_0)$ in infinite-horizon
Thinking Recursively

- How to solve this model? Try something crazy...
 1. Guess any value function, \(V^i(k) \)
 2. Derive \(V^{i+1}(k) \) by solving (for every \(k \))

\[
V^{i+1}(k) = \max_{k' \geq 0} u(f(k) + (1 - \delta)k - k') + \beta V^i(k')
\]

3. Continue until \(\sup_k \| V^{i+1}(k) - V^i(k) \| < \epsilon \) for a small \(\epsilon > 0 \)

- For this model, it will work every time! Regardless of \(V^0 \)
- This is called Value Function Iteration
- If it converges in \(I \) periods, you’ll have approximations of
 1. The value function \(V(k) = V^I(k) \)
 2. The policy function \(k'(k) = k^I(k) \)
Analysis

- Provable results: $k'(k)$
 1. $k'(0) > 0$
 2. $\lim_{k \to \infty} k'(k) < k$
 3. $\frac{\partial k'(k)}{\partial k} < 1$

- Implies the model converges to a steady state (from either side)
Why?

- Why would we expect VFI to work?
- Answer lies in **Functional Analysis**
- A *Functional Space*, J, is a set of functions on a given domain, $\Omega \subset \mathbb{R}^N$ i.e. if $f \in J$, then

 $$f : \Omega \rightarrow \mathbb{R}$$

- A *Functional Equation* maps functions into functions i.e.

 $$\mathcal{H} : J^1 \rightarrow J^2$$

- We can write most recursive economic problems as finding a function, $d \in J^1$ such that

 $$\mathcal{H}(d) = 0$$

where 0 is the zero function, not the number zero
Example

- In NCG example, J^1 is all functions mapping \mathcal{R}^+ into \mathcal{R}.
 1. $d = V$
 2. $H(d) = 0 \iff$ for all $k \geq 0$,

\[
V(k) - \max_{k' \geq 0} u(f(k) + (1 - \delta)k - k' + \beta V(k')) = 0
\]

- Can write it equivalently by using Euler Equation
 1. $d = k'$
 2. $H(d) = 0 \iff$ for all $k \geq 0$,

\[
\beta \times [1 - \delta + f'(k'(k))] \times u'(f(k'(k)) + (1 - \delta)k'(k) - k'(k'(k))) = 0
\]
Fixed Points

- Equivalency to fixed points. If $T : J \rightarrow J$, an eq’m can often be described as a $d \in J$ such that
 \[Td = d \]

 Notation: Often functional equations are just written as ‘Td’ instead of $T(d)$

- Completely equivalent to saying $Hd = Td - d$ and saying $Hd = 0$

- Fixed point approach lends itself to iterative approaches
Metric Spaces

- To characterize things cleanly, zoom out a little bit

Definition

A **Metric Space** is a set S, together with a metric (distance function) $\rho: S \times S \rightarrow \mathbb{R}$ such that for all $x, y, z \in S$:

1. $\rho(x, y) \geq 0$, with equality iff $x = y$
2. $\rho(x, y) = \rho(y, x)$
3. $\rho(x, z) \leq \rho(x, y) + \rho(y, z)$

- S could be a functional set e.g. $f, g \in J$
- Common metric is the sup-norm:
 \[
 \rho(f, g) = \sup_{x \in \Omega} |f(x) - g(x)|
 \]
Completeness

- A few more definitions

Definition
A sequence \(\{x_n\}_{n=0}^{\infty} \) in \(S \) is a **Cauchy sequence** if for every \(\epsilon > 0 \), \(\exists N_\epsilon \) such that
\[
\rho(x_n, x_m) < \epsilon \quad \forall n, m \geq N_\epsilon
\]

Definition
A metric space \((S, \rho)\) is **complete** if every Cauchy sequence in \(S \) converges to an element in \(S \).

- Complete metric space \(\approx \) A closed interval on the real line (as opposed to an open one)
The Contraction Mapping Theorem

Definition
Let \((S, \rho)\) be a metric space and \(T : S \to S\). \(T\) is a contraction mapping with modulus \(\beta\) if for some \(\beta \in (0, 1)\),
\[\rho(Tx, Ty) \leq \beta \rho(x, y) \]
for all \(x, y \in S\).

- If I apply my mapping to any two items in the set, those two elements always get closer together

Theorem (Contraction Mapping Theorem)
If \((S, \rho)\) is a complete metric space and \(T : S \to S\) is a contraction mapping with modulus \(\beta\), then
1. \(T\) has exactly one fixed point, \(\nu \in S\)
2. For any \(\nu_0 \in S\), \(\rho(T^n \nu_0, \nu) \leq \beta^n \rho(\nu_0, \nu)\) for \(n = 0, 1, 2, \ldots\)
Application

- If we have a contraction mapping...great!
- We know that \(\lim_{n \to \infty} \beta^n \rho(\nu_0, \nu) = 0 \) since \(\beta < 1 \)
 - Implies \(\lim_{n \to \infty} T^n \nu_0 = \nu \)
 - i.e. repeated iteration will eventually get us to the fixed point/equilibrium
- How do we know if it’s a contraction?...
Application

Theorem (Blackwell’s Sufficiency Theorem)

Let $X \subset \mathbb{R}^l$ and let $B(X)$ be a space of bounded functions $f: X \rightarrow \mathbb{R}$ with the sup-norm. Let $T: B(X) \rightarrow B(X)$ be an operator satisfying

1. (Monotonicity) $f, g \in B(X)$ and $f(x) \leq g(x)$ for all $x \in X$ implies $(Tf)(x) \leq (Tg)(x)$ for all $x \in X$

2. (Discounting) There exists some $\beta \in (0, 1)$ such that

$$[T(f + a)](x) \leq (Tf)(x) + \beta a, \quad \forall f \in B(X), \ a \geq 0, \ x \in X$$

Then T is a contraction with modulus β
Back the NCG Model

- Define TV as follows: For any $k \in \mathcal{R}^+$

$$ (TV)(k) = \max_{k' \geq 0} u(f(k) + (1 - \delta)k - k') + \beta V(k') $$

- Check Blackwell’s conditions
 1. Let $V_L(k) \leq V_H(k)$ for all k. Easy to see that $TV_L(k) \leq TV_H(k)$ for all k
 2. $[T(V + a)](k) \leq (TV)(k) + \beta a$ for any positive a

- Both conditions satisfied! Repeatedly applying T i.e. VFI is guaranteed to converge to unique solution
Example 2: Adding Shocks

- **Real Business Cycle Model**
 - NCG model with new production function
 \[y_t = A_t f(k_t) \]
 - \(A_t \) is total factor productivity: \(A_t = \exp(z_t) \) and
 \[z_t = \rho z_{t-1} + \epsilon_t \]
 - Recursive representation:
 \[V(A, k) = \max_{k' \geq 0} \ u(Af(k) + (1 - \delta)k - k') + \beta E_{\tilde{A} | A}[V(\tilde{A}, k')] \]

- Two states now: Capital stock and productivity
- Still satisfies Blackwell’s sufficiency conditions
RBC Model: Solution Approach 1

1. Tauchenize z_t shock: $z \in \{z_1, z_2, \ldots, z_N\}$

2. Cubic spline interpolation across k for each z_i

 • Delivers a collection of continuous, differentiable functions,
 \[\{V_i(k)\}_{i=1}^{N} \]
 - $V_i(k) \approx V(\exp(z_i), k)$ for $i = 1, 2, \ldots, N$
 - Monotonicity: $V_i(k) \leq V_{i+1}(k)$ when $z_i < z_{i+1}$
RBC Model: Solution Approach 2

1. Create a grid over k; grid-search maximum
2. Gaussian quadrature expectations over z_t (continuous)

- Must be careful...
 - Policy functions look sensible
 - Value function not monotone in z_t!
- Limitation of grid-search
 - Grid-search cannot *extrapolate*
 - When z_t is high, optimal solution almost always $k' > k$
 - If k is highest grid point...best you can do is $k' = k$
 - Sub-optimal behavior \implies Low values
 - Translates to lower k levels since convergence fast and process persistent
Speeding Things Up 1

- VFI *linearly* at a rate β
- A little slow for large scale problems
- Speeding up: Many tricks devised over the years
- Approach 1 (Judd [1998]): **Policy Function Iteration Hybrid**
 - Start with guess $V^i(A, k)$
 1. Find corresponding policy, $k^i(A, k)$ via maximization
 2. Fix policy function: Apply Bellman (without maximization) M times
 - Delivers new $V^{i+1}(A, k)$
- Takes more iterations than VFI, BUT...
 - Tends to converge faster than linearly in β...helpful!
 - Can often speed things up by 10x or more
 - Still a contraction (convergence guaranteed)
Speeding Things Up 2

- **Endogenous Grid Method** (Barillas and Fernandez-Villaverde [2007])
- Observe FOC:
 \[u'(c^*(A, k)) = \beta E_{\tilde{A}|A} \left[V_k(\tilde{A}, k^*(A, k)) \right] \]
- Notice that if \(k^* \) was fixed,
 \[c^*(k^*) = u'^{-1} \left(\beta E_{\tilde{A}|A} \left[V_k(\tilde{A}, k^*) \right] \right) \]
 No maximization/root-finding required!
- Exploit this to speed things up (a lot)
 - Fix grid over optimal capital choice
 - Derive grid over current capital endogenously
Endogenous Grid Method: Requirements

- Store two different value functions:
 1. \(V^i(A_t, k_{t+1}) = \beta E_{\tilde{A}_{t+1}|A_t}[V_{\text{standard}}^i(\tilde{A}_{t+1}, k_{t+1})] \)
 - Expected discounted value of having \(k_{t+1} \) tomorrow if shock is \(z_t \) today
 2. \(V^i(A_t, Y_t) = \max_{k_{t+1}} u(Y_t - k_{t+1}) + \beta E_{\tilde{A}_{t+1}|A_t}[V_{\text{standard}}^i(\tilde{A}_{t+1}, k_{t+1})] \)
 - Value function as a function of available market resources
 \(Y_t = f(k_t) + (1 - \delta)k_t \)

- Store three different grids
 1. Tauchenized grid over \(z_t \), \(G_z \)
 2. Capital grid over investment decisions, \(G_k \)
 3. Market resources grid, \(G_y \): \(Y_t \in G_y \) if \(\exists (k, z) \in G_k \times G_z \) such that
 \(Y_t = e^{z_t}f(k_t) + (1 - \delta)k_t \)
Endogenous Grid Method: Procedure

• Begin with a guess $V^i(A_t, k_{t+1})$

1. Compute approximate derivative $V^i_k(A_t, k_{t+1})$ by averaging slopes of linear interpolation

2. Compute $c^*(A_t, k_{t+1}) = u^{-1}(V^i_k(A_t, k_{t+1}))$

3. Compute necessary market resources
 \[Y(A_t, k_{t+1}) = c^*(A_t, k_{t+1}) + k_{t+1} \]

4. Compute
 \[V^i(A_t, Y(A_t, k_{t+1})) = u(c^*(A_t, k_{t+1})) + V^i(A_t, k_{t+1}) \]

5. Compute $V^{i+1}(A_t, Y_t)$ by interpolating $V^i(A_t, Y(A_t, k_{t+1}))$ on G_Y

6. Compute $V^{i+1}(A_t, k_{t+1}) = \beta E_{\tilde{A}_{t+1}|A_t}[V^{i+1}(A_t, Y_t)]$

7. Stop if $\sup_{i,j} |V^{i+1}(A_i, k_j) - V^i(A_i, k_j)| < \epsilon$
Endogenous Grid Method

• Once done, use root-solver to find endogenous capital grid i.e. $k \in G_{k, \text{state}}$ if $Y(A_t, k_{t+1}) = A_t f(k) + (1 - \delta)k$ for some A_t and k_{t+1}
 • Value function is $V_{\text{standard}}(A_t, k(A_t, Y_t)) = V(A_t, Y_t)$ for all Y_t such that $Y_t = Y(A_t, k_{t+1})$
 • Policy function is the original grid! (with domain being endogenous grid)
Non-contractions

• Without the CMT...
• Cannot always guarantee a process will converge
 • Sometimes it does anyway! (count your blessings)
 • Other times, exploit other features
• Example: Monotonicity
 • Instead of working with distances in a metric space...
 • Work with a notion of inequality in an ordered set
 • Different fixed point theorem, but still works!
Partially Ordered Sets

Definition
A Partially Ordered Set, \((X, \leq)\), is a set taken together with a partial order i.e.

1. For any \(a \in X\), \(a \leq a\) (Reflexivity)
2. For any \(a, b \in X\), \(a \leq b\) and \(b \leq a\) implies \(a = b\) (Antisymmetry)
3. For any \(a, b, c \in X\), \(a \leq b\) and \(b \leq c\) implies \(a \leq c\) (Transitivity)
Complete Lattices

Definition
A partially ordered set, \((L, \leq)\), is called a **Complete Lattice** if every subset has a least upper bound and a greatest lower bound in \(L\) i.e. for any \(M \subseteq L\),

1. \(\sup M \in L\)
2. \(\inf M \in L\)

- Akin to the notion of closedness/boundedness, but there is no distance metric
Tarski’s Fixed Point Theorem

Definition
Let \((L, \leq)\) be a complete lattice, and suppose \(T : L \rightarrow L\) is a monotone function i.e. for any \(x, y \in L\), the following holds

\[x \leq y \implies Tx \leq Ty \]

Then the set of all fixed points in \(L\) for the function \(T\) is also a complete lattice.

- Cool theorem! Some interesting implications

1. There exists a greatest \((\bar{u})\) and a least \((u)\) fixed point (possibly the same; fixed point set non-empty)
2. If \(x \leq Tx\), then \(x \leq u\)
3. If \(x \geq Tx\), then \(x \geq \bar{u}\)
Applying Tarski’s: The Eaton-Gersovitz/Arellano Model

- Based on NCG/RBC model, but a few simple differences
 1. Gov’t controls all consumption decisions
 2. No investment (endowment economy)
 3. Foreigners buy debt
 4. Gov’t monopolist in debt market/foreign lenders competitive
 - Internalizes price changes from debt issuance
 5. Gov’t cannot commit to repay debt
 - Will default if ex-post optimal
 - If default, excluded from credit markets forever i.e. $c_t = y_t$
 and pay default cost
The Arellano Model: Sovereign

- Sovereign wants to solve similar Bellman equation

\[V(y, b) = \max_{b'} u(y - b + q(y, b')b') + \beta E[\hat{V}(\tilde{y}, b')] \]

where

\[\hat{V}(y, b) = \max\{V(y, b), X(y)\} \]

and \(X(y) \) is the utility value of defaulting in state \(y \)

\[X(y) = u(y \times [1 - \phi(y)]) + \beta E[X(\tilde{y})] \]
The Arellano Model: Lenders

- Foreign lenders are risk-neutral, deep-pocketed
- Competitively price debt \implies
 - Can get a risk-free return, r
 - Can invest in risky sovereign debt (may get defaulted on)

$$q(y, b') = \frac{E_{\tilde{y}|y} \left[1 \{ V(\tilde{y}, b') \geq X(\tilde{y}) \} \right]}{1 + r}$$
Solving the Arellano Model

• That’s it! Pretty simple, BUT...
 - VFI is no longer a contraction
 - Discounting in Blackwell sufficiency no longer holds, since V enters into q
• Alternative approach via Tarski: Iterate on q^i
 1. Define Q to be a complete lattice of decreasing functions i.e.

 \[
 q \in Q \text{ then } q : \mathcal{Y} \times \mathcal{B} \rightarrow \left[0, \frac{1}{1 + r}\right]
 \]
 2. Take our order to be the absolute order i.e. if $q_1, q_2 \in Q$
 \[
 q_1 \leq q_2 \iff q_1(y, b) \leq q_2(y, b) \quad \forall (y, b) \in \mathcal{Y} \times \mathcal{B}
 \]
Solving the Arellano Model

- Iterative operator T defined as follows
 - Fixing q, the sovereign's Bellman is a contraction: $q^i \implies V^i$
 - Update step

$$
(Tq^i)(y, b) = \frac{E_{\tilde{y}|y} \left[1 \{ V^i(\tilde{y}, b') \geq X(\tilde{y}) \} \right]}{1 + r}
$$

Proposition

The operator T is a monotone self-map on Q

- Easy to show Tq must be decreasing, self-map
- Monotonicity follows from fact that if $q_1 \leq q_2$, then $V_1 \leq V_2$ since prices are always higher in world 2
Applying Tarski’s

- T is a monotone operator on a complete lattice, so Tarski’s theorem applies
 - Get that an equilibrium exists (may be many)
- To find it is easy: Repeatedly apply T from either top or bottom
 - Set $q^0 = 0$; know $q^0 \leq q_{eq}$, which implies $Tq^0 \leq Tq_{eq} = q_{eq}$

\[
\lim_{n \to \infty} T^n q^0 \leq T^n q_{eq} = q_{eq}
\]

- Gets bigger with each iteration
- Must converge to something: Will converge to lowest fixed point (worst eq’m)
- Same logic applies starting from best i.e. $q^0 = \frac{1}{1+r}$
 - Will converge to best